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One-Phase Stefan
Problem

The domain Ω ⊂ R2, Ω ≡ {(x, t)| 0 < x < s(t), 0 < t < ∞} and
Γ ≡ {(s(t), t)| 0 ≤ t < ∞}. Find {u(x, t), s(t)}, where u ∈ C(2,1) and s ∈ C(1), such
that

∂u

∂t
=

∂2u

∂x2
for all (x, t) ∈ Ω, (1.4)

s(0) = 0, u(0, t) = −1, u(s(t), t) = 0, t > 0, (1.5)

∂u

∂x

����
x=s(t)−

= L
ds(t)

dt
, t > 0, (1.6)
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Numerical Solution
of MBPs

A Mathematical Problem. Find the triple {u1(x, t), u2(x, t), s(t)}, for which

Liui ≡

� ∂

∂x

�
pi(x, t)

∂

∂x

�
+ ai(x, t)

∂

∂x
− bi(x, t) − di(x, t)

∂

∂t

�
ui = fi(x, t),

(x, t) ∈ Ωi, t > 0, i = 1, 2, (2.1)

where Ωi is the subset of the rectangle (l1, l2) × (0, K) such that

(x, t) ∈ Ω1 ⇔ t ∈ (0, K) ∧ x ∈ (l1, s(t)) ≡ Q1(s(t)),

and

(x, t) ∈ Ω2 ⇔ t ∈ (0, K) ∧ x ∈ (s(t), l2) ≡ Q2(s(t)),

s(t) is the moving boundary, and K < ∞ is some arbitrary but fixed upper limit.

⋆⋆⋆⋆⋆
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Numerical Solution
of MBPs

Fixed boundary and initial conditions are,

αi(t)ui(li, t) + (−1)iβi(t)pi(li, t)
∂ui

∂x
(li, t) = γi(t), t > 0, i = 1, 2 (2.2)

s(0) = s0, l1 ≤ s0 ≤ l2, (2.3)

u1(x, 0) = u0
1(x), l1 ≤ x ≤ s0, u2(x, 0) = u0

2(x), s0 ≤ x ≤ l2. (2.4)

where, αi, βi, γi, u0
i , i = 1, 2, are given functions. We suppose that αi(t) ≥ 0,

βi(t) ≥ 0, αi(t) + βi(t) 6= 0, i = 1, 2, t > 0.
Conditions at the moving interface x = s(t) will be written as

H

�
u1(s, t), u2(s, t), p1(s, t)

∂u1

∂x
(s, t), p2(s, t)

∂u2

∂x
(s, t), s(t),

ds(t)

dt
, t

�

= 0, t > 0,

(2.5)

where H = (H1, H2, H3) is a given function with values in R3.

⋆⋆⋆⋆⋆
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Numerical Solution
of MBPs

We first apply the method of time discretization called also Rothe’s method. Using
implicit Euler discretization in time, the resulting approximate free boundary (interface)
problem at the time level t = tn may be written as

[pn
i (x)un

i
′]′ + an

i (x)un
i
′ − bn

i (x)un
i − dn

i (x)
un

i − ûn−1
i (x)

∆t
= fn

i (x),

x ∈ Qi(s
n), i = 1, 2, (2.9)

αn
i un

i (li) + (−1)iβn
i pn

i (li)u
n
i
′(li) = γn

i , i = 1, 2, (2.10)

Hn

�
un
1 (sn), un

2 (sn), pn
1 (sn)un

1
′, pn

2 (sn)un
2
′, sn,

sn − sn−1

∆t
, tn

�

= 0, (2.11)

Our task now is to find the triples {u1(x), u2(x), s} satisfying (2.9)–(2.11) at successive
times tn, n = 1, . . . , N .

⋆⋆⋆⋆⋆
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Numerical Solution
of MBPs

To solve the unknown interface problem at one time level we apply method of transfer of
conditions by J. Taufer. For αi > 0 from the Theorem 2.1(discussed in the paper) we
solve

yn
i
′ =

�dn
i (x)

∆t
+ bn

i (x)

�
yn

i
2 +

an
i (x)

pn
i (x)

yi −
1

pn
i (x)

a.e. on [l1, l2], (2.14)

yi(li) = (−1)i βn
i

αn
i

, i = 1, 2,

zn
i
′ =

�dn
i (x)

∆t
+bn

i (x)

�
yn

i (x)zn
i −
� ûn−1

i (x)

∆t
−fn

i (x)

�
yn

i (x) a.e. on [l1, l2], (2.15)

zn
i (li) =

γi

αi

, i = 1, 2.

The functions yi, zi possess the property that any absolutely continuous function ui that
satisfies ODE a.e. and for which fixed boundary condition holds satisfies also the
transferred condition
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Numerical Solution
of MBPs

⋆⋆⋆⋆⋆

un
i (x) = zn

i (x) − yn
i (x)pn

i (x)un
i
′(x) ∀x ∈ [l1, l2], i = 1, 2. (2.16)

If yn
i (x) 6= 0 we may express pn

i (x)un
i
′ from (2.16) and substitute into the unknown

interface condition:

Hn

h
un
1 (sn), un

2 (sn),
zn
1 (sn) − un

1 (sn)

yn
1 (sn)

,
zn
2 (sn) − un

2 (sn)

yn
2 (sn)

, sn,
sn − sn−1

∆t
, tn

i

= 0.

(2.23)

The transferred condition (2.16) is sometimes called Riccati transformation since (2.14)
is the Riccati equation.

⋆⋆⋆⋆⋆
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Properties of
Algorithm

We learn the properties of the algorithm and work on the following two problems:

The feasibility of algorithm.

The existence of the interface sn.

An ordinary differential equation of the form

y′(x) = A(x)y2(x) + B(x)y(x) + C(x) (3.1)

is known as a Riccati equation or a generalized Riccati equation

Let y and ω be such that y(x) =
ω(x)

e
−

x
0 B(ξ)dξ

=
ω(x)
E(x)

, x ∈ [0, 1] then the Lemma 3.1

(in the paper) enables us to study the following equation instead of (3.1)

ω′ = P (x)ω2 + Q(x), ∀x ∈ (0, 1), ω(0) = y0. (3.4)

In addition, sgn P (x)=sgn A(x), sgn Q(x)=sgn C(x), sgn ω(x)= sgn y(x).

⋆⋆⋆
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Properties of
Algorithm

Theorem 3.3. Let P, Q ∈ C([0, 1]) and P (x) ≥ 0, Q(x) ≤ 0 ∀x ∈ [0, 1]. Let also
ω0 ≤ 0 and ω0 + Q(0) < 0. Then there exists a unique continuous function
ω : [0, 1] → R which satisfies the equation (3.4) on [0, 1] with the initial condition
ω(0) = ω0 and furthermore ω(x) < 0 ∀x ∈ (0, 1].

⋆⋆⋆

Development on One-Phase Stefan Problem

Lu ≡ uxx + a(x, t)ux − b(x, t)u − d(x, t)ut = f(x, t), (x, t) ∈ Ω0, (3.18)

where Ω0 = {(x, t) : 0 < x < s(t), t > 0}. The conditions at the moving interface are

u(s(t), t) = 0, t > 0, (3.20a)

ds

dt
+ k(s(t), t)ux(s(t), t) = η(s(t), t), t > 0. (3.20b)
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Properties of
Algorithm

Assumption 3.1

1. All the functions in the equation (3.18) and in the condition (3.20b) are continuous
and bounded on [0,∞) × [0, K], the function α is continuous on [0, K] and the
function u0 is continuous on [0, s0].

2. We suppose that α(t) > 0, t ∈ [0, K]; k(x, t) ≥ 0, η(x, t) ≥ 0,

0 ≤ a ≤ a(x, t) ≤ a, 0 ≤ b ≤ b(x, t) ≤ b, 0 ≤ d ≤ d(x, t) ≤ d, f(x, t) ≤ 0,
(x, t) ∈ [0,∞) × [0, K]; u0(x) ≥ 0, x ∈ [0, s(0)], and α(0) = u0(0).

3. There exist constants M ≥ 0 and β ≥ 0 such that

u0(x) ≤ M
s0 − x

s0
, f(x, t) ≥ bMeβt x − s0

s0
, x ∈ [0, s0], t ∈ [0, K].

4. f(x, t) = 0, x ≥ s0, t ∈ [0, K].

5. Functions η(x, t), k(x, t) are continuously differentiable on [0,∞) × [0, K].
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Existence of Solution
Using the time discretization method with the time step ∆t, n = 1, 2, ..., N , the
approximate problem for (3.18)–(3.20) is

Lnun ≡ un′′ + an(x)un′ − [bn(x)un +
dn(x)

∆t
]un =

= fn(x) − dn(x)

∆t
ûn−1(x), 0 < x < sn, (3.21)

un(0) = αn, (3.22)

un(sn) = 0, sn − sn−1 + ∆tkn(sn)un′(sn) = ∆tηn(sn). (3.23)

Theorem 3.5. Let un−1, sn−1 be given and un−1(x) ≥ 0, x ∈ [0, sn−1]. If the
problem (3.21)–(3.23) has a solution {un, sn}, then un(x) ≥ 0 for x ∈ [0, sn] and
sn ≥ sn−1.

⋆⋆⋆
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Existence of Solution
⋆⋆⋆

Theorem 3.6. The free boundary sn of (3.21)–(3.23) at t = tn, if it exists, is a root of
the equation ϕn(x) = 0. Conversely, any zero of ϕn in (0,∞) represents an admissible
free boundary sn of the problem (3.21)–(3.23).

ϕn(x) = x − sn−1 − ∆t
�

ηn(x) − kn(x)
zn(x)

y(x)

�
. (3.28)

Theorem 3.7. Given a couple {un−1, sn−1} such that sn−1 ≥ s0, un−1(x) ≥ 0 for
x ∈ [0, sn−1], there exists a solution {un, sn} of the free boundary problem
(3.21)–(3.23) and any such solution satisfies un(x) ≥ 0, x ∈ [0, sn], and sn ≥ sn−1.

⋆⋆⋆
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Uniqueness of
Solution

⋆⋆⋆

Lemma 3.2. Let M and β be the constants from Assumption 3.1-3. Put

‖α‖ = max
[0,K]

| α(t) |, M1 = max(M, ‖α‖).

Suppose that

0 ≤ un−1(x) ≤ M1
sn−1 − x

sn−1
eβ(n−1)∆t, x ∈ [0, sn−1].

Then we have

0 ≤ un(x) ≤ M1
sn − x

sn
eβn∆t, x ∈ [0, sn]

for every solution un, sn.

⋆⋆⋆
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Uniqueness of
Solution

⋆⋆⋆

Theorem 3.8. Let ‖η‖, ‖k‖ be constants such that |η(x, t)| ≤ ‖η‖, |k(x, t)| ≤ ‖k‖,
x ∈ [0,∞), t ∈ [0, K]. Let β be the constant from Assumption 3.1-3 and let M1 be the
constant from Lemma 3.2. Set

M̂1 = M1eβK , C = ‖η‖ + ‖k‖M̂1

s0
.

Then any solution {un, sn} of the problem (3.21)–(3.23) satisfies

0 ≤ un(x) ≤ M̂1, x ∈ [0, sn], n = 0, 1, ..., N, (3.31)

0 ≤ sn − sn−1 ≤ C∆t, n = 1, 2, ..., N, (3.32)

and thus

0 ≤ sn ≤ s0 + CK, n = 1, 2, ..., N. (3.33)

⋆⋆⋆
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Uniqueness of
Solution

⋆⋆⋆

Theorem 3.9. For a sufficiently small ∆t, the problem (3.21)–(3.23) has a unique
solution {un, sn}.

⋆⋆⋆

ϕ′ ≥ 1 − ∆t‖ηx‖ − ‖kx‖
√

∆teas0√
U

"
tanh

 r
U

∆t
s0

!#
−1

· M1 (3.39)

for x ∈ [sn−1, sn−1 + C]. Hence, for sufficiently small ∆t we obtain the estimate

ϕn′(x) > 0, x ∈ [sn−1, sn−1 + C],

and thus the function ϕn(x) is increasing on [sn−1, sn−1 + C] and has at most one

zero.
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The Numerical
Experiments

Problem. A slab, 0 ≤ x ≤ 1, initially solid at temperature Ts = u2(x, 0) = −0.5◦C and
u1(x, 0) = 0◦C (just formally), s(0) = 0, is melted from the left by imposing a
temperature Tl = u1(0, t) = 1◦C at the face x = 0 and at the back face x = 1 use the
Neumann temperature itself. Find the triple {u1(x, t), u2(x, t), s(t)}, where u1 and u2

denote the temperature in the liquid and solid phases, respectively.

Location of the free boundary s(t) computed by two different algorithms

t Alg1 RE1 Alg2 RE2 True Solution

4.0309 0.0351 0.0140 0.0346 0.0281 0.0356

6.0460 0.0461 0.0573 0.0447 0.0252 0.0436

8.0470 0.0523 0.0398 0.0505 0.0040 0.0503

⋆⋆⋆
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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The Numerical
Experiments
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