Numerical Solution of Stefan-Like Problems, Theory and Algorithm

Azat Satklichov

azat@kma.zcu.cz

Faculty of Applied Sciences, University of West Bohemia in Pilsen

Contents

1. **Problem Formulation**

- Standard and Unknown Boundary Value Problems.
- Assumptions, Thermodynamic Concepts, Interface Conditions.
- One and Two Phase Stefan Problems.

2. Numerical Solution of Moving Boundary Problems

- Combination of Numerical Methods for Solving 1D problems with Moving Boundary.
- The Algorithm and Its Application (Numerical Experiments).

3. Properties of Algorithm

- Properties of the Solutions of the Riccati Equations.
- Development on the One-Phase Stefan Problem.
- Existence and Uniqueness of the Solution.

One-Phase Stefan Problem

The domain $\Omega \subset R^2$, $\Omega \equiv \{(x,t) | 0 < x < s(t), 0 < t < \infty\}$ and $\Gamma \equiv \{(s(t),t) | 0 \le t < \infty\}$. Find $\{u(x,t), s(t)\}$, where $u \in C^{(2,1)}$ and $s \in C^{(1)}$, such that

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{for all} \quad (x, t) \in \Omega, \tag{1.4}$$

$$s(0) = 0, \quad u(0,t) = -1, \quad u(s(t),t) = 0, \quad t > 0,$$
 (1.5)

$$\left. \frac{\partial u}{\partial x} \right|_{x=s(t)^{-}} = L \frac{\mathrm{d}s(t)}{\mathrm{d}t}, \quad t > 0, \tag{1.6}$$

Figure 2. 2.1. Physical realization of the one-phase Stefan problem.

A Mathematical Problem. Find the triple $\{u_1(x,t), u_2(x,t), s(t)\}$, for which

$$L_{i}u_{i} \equiv \left(\frac{\partial}{\partial x}\left(p_{i}(x,t)\frac{\partial}{\partial x}\right) + a_{i}(x,t)\frac{\partial}{\partial x} - b_{i}(x,t) - d_{i}(x,t)\frac{\partial}{\partial t}\right)u_{i} = f_{i}(x,t),$$

$$(x,t) \in \Omega_{i}, \quad t > 0, \quad i = 1, 2,$$

$$(2.1)$$

where Ω_i is the subset of the rectangle $(l_1, l_2) \times (0, K)$ such that

 $(x,t) \in \Omega_1 \Leftrightarrow t \in (0,K) \land x \in (l_1,s(t)) \equiv Q_1(s(t)),$

and

$$(x,t) \in \Omega_2 \Leftrightarrow t \in (0,K) \land x \in (s(t),l_2) \equiv Q_2(s(t)),$$

s(t) is the moving boundary, and $K < \infty$ is some arbitrary but fixed upper limit.

 $\star \star \star \star \star$

Fixed boundary and initial conditions are,

$$\alpha_{i}(t)u_{i}(l_{i},t) + (-1)^{i}\beta_{i}(t)p_{i}(l_{i},t)\frac{\partial u_{i}}{\partial x}(l_{i},t) = \gamma_{i}(t), \quad t > 0, i = 1, 2$$
(2.2)

$$s(0) = s^0, \quad l_1 \le s^0 \le l_2,$$
 (2.3)

$$u_1(x,0) = u_1^0(x), \quad l_1 \le x \le s^0, \quad u_2(x,0) = u_2^0(x), \quad s^0 \le x \le l_2.$$
 (2.4)

where, α_i , β_i , γ_i , u_i^0 , i = 1, 2, are given functions. We suppose that $\alpha_i(t) \ge 0$, $\beta_i(t) \ge 0$, $\alpha_i(t) + \beta_i(t) \ne 0$, i = 1, 2, t > 0. Conditions at the moving interface x = s(t) will be written as

$$H(u_{1}(s,t), u_{2}(s,t), p_{1}(s,t))\frac{\partial u_{1}}{\partial x}(s,t), p_{2}(s,t)\frac{\partial u_{2}}{\partial x}(s,t), s(t), \frac{ds(t)}{dt}, t) = 0, \quad t > 0,$$
(2.5)

where $H = (H_1, H_2, H_3)$ is a given function with values in \mathbb{R}^3 .

★★★★

We first apply the method of time discretization called also Rothe's method. Using implicit Euler discretization in time, the resulting approximate free boundary (interface) problem at the time level $t = t^n$ may be written as

$$[p_i^n(x)u_i^{n'}]' + a_i^n(x)u_i^{n'} - b_i^n(x)u_i^n - d_i^n(x)\frac{u_i^n - \hat{u}_i^{n-1}(x)}{\Delta t} = f_i^n(x),$$

$$x \in Q_i(s^n), \quad i = 1, 2,$$
 (2.9)

$$\alpha_i^n u_i^n(l_i) + (-1)^i \beta_i^n p_i^n(l_i) u_i^{n\prime}(l_i) = \gamma_i^n, \quad i = 1, 2,$$
(2.10)

$$H^{n}\left(u_{1}^{n}(s^{n}), u_{2}^{n}(s^{n}), p_{1}^{n}(s^{n})u_{1}^{n}, p_{2}^{n}(s^{n})u_{2}^{n}, s^{n}, \frac{s^{n}-s^{n-1}}{\Delta t}, t^{n}\right) = 0, \qquad (2.11)$$

Our task now is to find the triples $\{u_1(x), u_2(x), s\}$ satisfying (2.9)–(2.11) at successive times t^n , n = 1, ..., N.

★★★★★

To solve the unknown interface problem at one time level we apply method of transfer of conditions by J. Taufer. For $\alpha_i > 0$ from the **Theorem 2.1** (discussed in the paper) we solve

$$y_{i}^{n\prime} = \left[\frac{d_{i}^{n}(x)}{\Delta t} + b_{i}^{n}(x)\right]y_{i}^{n2} + \frac{a_{i}^{n}(x)}{p_{i}^{n}(x)}y_{i} - \frac{1}{p_{i}^{n}(x)} \quad a.e. \quad \text{on} \quad [l_{1}, l_{2}], \quad (2.14)$$
$$y_{i}(l_{i}) = (-1)^{i}\frac{\beta_{i}^{n}}{\alpha_{i}^{n}}, \quad i = 1, 2,$$
$$z_{i}^{n\prime} = \left[\frac{d_{i}^{n}(x)}{\Delta t} + b_{i}^{n}(x)\right]y_{i}^{n}(x)z_{i}^{n} - \left[\frac{\hat{u}_{i}^{n-1}(x)}{\Delta t} - f_{i}^{n}(x)\right]y_{i}^{n}(x) \quad a.e. \quad \text{on} \quad [l_{1}, l_{2}], \quad (2.15)$$

$$z_i^n(l_i) = \frac{\gamma_i}{\alpha_i}, \quad i = 1, 2.$$

The functions y_i, z_i possess the property that any absolutely continuous function u_i that satisfies ODE a.e. and for which fixed boundary condition holds satisfies also the transferred condition

 $u_i^n(x) = z_i^n(x) - y_i^n(x) p_i^n(x) u_i^{n'}(x) \quad \forall x \in [l_1, l_2], \quad i = 1, 2.$ (2.16)

If $y_i^n(x) \neq 0$ we may express $p_i^n(x)u_i^n$ from (2.16) and substitute into the unknown interface condition:

$$H^{n}\left[u_{1}^{n}(s^{n}), u_{2}^{n}(s^{n}), \frac{z_{1}^{n}(s^{n}) - u_{1}^{n}(s^{n})}{y_{1}^{n}(s^{n})}, \frac{z_{2}^{n}(s^{n}) - u_{2}^{n}(s^{n})}{y_{2}^{n}(s^{n})}, s^{n}, \frac{s^{n} - s^{n-1}}{\Delta t}, t^{n}\right] = 0.$$
(2.23)

The transferred condition (2.16) is sometimes called *Riccati transformation* since (2.14) is the *Riccati equation*.

 $\star \star \star \star \star$

Properties of Algorithm

We learn the properties of the algorithm and work on the following two problems:

- The feasibility of algorithm.
- The existence of the interface s^n .

An ordinary differential equation of the form

$$y'(x) = A(x)y^{2}(x) + B(x)y(x) + C(x)$$
(3.1)

is known as a *Riccati equation* or a *generalized Riccati equation* Let y and ω be such that $y(x) = \frac{\omega(x)}{e^{-\frac{x}{0}B(\xi)d\xi}} = \frac{\omega(x)}{E(x)}, \quad x \in [0, 1]$ then the Lemma 3.1 (in the paper) enables us to study the following equation instead of (3.1)

$$\omega' = P(x)\omega^2 + Q(x), \quad \forall x \in (0,1), \quad \omega(0) = y_0.$$
(3.4)

In addition, sgn P(x)=sgn A(x), sgn Q(x)=sgn C(x), sgn $\omega(x)$ = sgn y(x).

Properties of Algorithm

Theorem 3.3. Let $P, Q \in C([0, 1])$ and $P(x) \ge 0, Q(x) \le 0 \ \forall x \in [0, 1]$. Let also $\omega_0 \le 0$ and $\omega_0 + Q(0) < 0$. Then there exists a unique continuous function $\omega : [0, 1] \to R$ which satisfies the equation (3.4) on [0, 1] with the initial condition $\omega(0) = \omega_0$ and furthermore $\omega(x) < 0 \ \forall x \in (0, 1]$.

★★★

Development on One-Phase Stefan Problem

$$Lu \equiv u_{xx} + a(x,t)u_x - b(x,t)u - d(x,t)u_t = f(x,t), \quad (x,t) \in \Omega_0,$$
(3.18)

where $\Omega_0 = \{(x,t) : 0 < x < s(t), t > 0\}$. The conditions at the moving interface are

$$u(s(t), t) = 0, \quad t > 0,$$
 (3.20a)

$$\frac{ds}{dt} + k(s(t), t)u_x(s(t), t) = \eta(s(t), t), \quad t > 0.$$
(3.20b)

Properties of Algorithm

Assumption 3.1

- 1. All the functions in the equation (3.18) and in the condition (3.20b) are continuous and bounded on $[0, \infty) \times [0, K]$, the function α is continuous on [0, K] and the function u_0 is continuous on $[0, s^0]$.
- 2. We suppose that $\alpha(t) > 0, t \in [0, K]; k(x, t) \ge 0, \eta(x, t) \ge 0,$ $0 \le \underline{a} \le a(x, t) \le \overline{a}, 0 \le \underline{b} \le b(x, t) \le \overline{b}, 0 \le \underline{d} \le d(x, t) \le \overline{d}, f(x, t) \le 0,$ $(x, t) \in [0, \infty) \times [0, K]; u_0(x) \ge 0, x \in [0, s(0)], \text{ and } \alpha(0) = u_0(0).$

3. There exist constants $M \ge 0$ and $\beta \ge 0$ such that

$$u_0(x) \le M \frac{s^0 - x}{s^0}, \quad f(x,t) \ge \underline{b} M e^{\beta t} \frac{x - s^0}{s^0}, \quad x \in [0, s^0], \ t \in [0, K].$$

- 4. $f(x,t) = 0, x \ge s^0, t \in [0, K].$
- 5. Functions $\eta(x,t)$, k(x,t) are continuously differentiable on $[0,\infty) \times [0,K]$.

Existence of Solution

Using the time discretization method with the time step Δt , n = 1, 2, ..., N, the approximate problem for (3.18)–(3.20) is

$$L^{n}u^{n} \equiv u^{n''} + a^{n}(x)u^{n'} - [b^{n}(x)u^{n} + \frac{d^{n}(x)}{\Delta t}]u^{n} =$$

$$= f^{n}(x) - \frac{d^{n}(x)}{\Delta t} \hat{u}^{n-1}(x), \quad 0 < x < s^{n},$$
(3.21)

$$u^n(0) = \alpha^n, \tag{3.22}$$

$$u^{n}(s^{n}) = 0, \quad s^{n} - s^{n-1} + \Delta t k^{n}(s^{n}) u^{n'}(s^{n}) = \Delta t \eta^{n}(s^{n}). \tag{3.23}$$

Theorem 3.5. Let u^{n-1} , s^{n-1} be given and $u^{n-1}(x) \ge 0$, $x \in [0, s^{n-1}]$. If the problem (3.21)–(3.23) has a solution $\{u^n, s^n\}$, then $u^n(x) \ge 0$ for $x \in [0, s^n]$ and $s^n \ge s^{n-1}$.

 $\star \star \star$

Existence of Solution

Theorem 3.6. The free boundary s^n of (3.21)–(3.23) at $t = t^n$, if it exists, is a root of the equation $\varphi^n(x) = 0$. Conversely, any zero of φ^n in $(0, \infty)$ represents an admissible free boundary s^n of the problem (3.21)–(3.23).

$$\varphi^{n}(x) = x - s^{n-1} - \Delta t \left[\eta^{n}(x) - k^{n}(x) \frac{z^{n}(x)}{y(x)} \right].$$
 (3.28)

Theorem 3.7. Given a couple $\{u^{n-1}, s^{n-1}\}$ such that $s^{n-1} \ge s^0, u^{n-1}(x) \ge 0$ for $x \in [0, s^{n-1}]$, there exists a solution $\{u^n, s^n\}$ of the free boundary problem (3.21)–(3.23) and any such solution satisfies $u^n(x) \ge 0, x \in [0, s^n]$, and $s^n \ge s^{n-1}$.

★★★

Uniqueness of Solution

$\star\star\star$

Lemma 3.2. Let *M* and β be the constants from Assumption 3.1-3. Put

 $\|\alpha\| = \max_{[0,K]} |\alpha(t)|, \quad M_1 = \max(M, \|\alpha\|).$

Suppose that

$$0 \le u^{n-1}(x) \le M_1 \frac{s^{n-1} - x}{s^{n-1}} e^{\beta(n-1)\Delta t}, \quad x \in [0, s^{n-1}].$$

Then we have

$$0 \le u^n(x) \le M_1 \frac{s^n - x}{s^n} e^{\beta n \Delta t}, \quad x \in [0, s^n]$$

for every solution u^n, s^n .

 $\star \star \star$

Uniqueness of Solution

Theorem 3.8. Let $||\eta||$, ||k|| be constants such that $|\eta(x,t)| \le ||\eta||$, $|k(x,t)| \le ||k||$, $x \in [0,\infty)$, $t \in [0, K]$. Let β be the constant from Assumption 3.1-3 and let M_1 be the constant from Lemma 3.2. Set

$$\hat{M}_1 = M_1 e^{\beta K}, \quad C = \|\eta\| + \|k\| \frac{\hat{M}_1}{s^0}.$$

Then any solution $\{u^n, s^n\}$ of the problem (3.21)–(3.23) satisfies

$$0 \le u^n(x) \le \hat{M}_1, \quad x \in [0, s^n], n = 0, 1, ..., N,$$
(3.31)

$$0 \le s^n - s^{n-1} \le C\Delta t, n = 1, 2, ..., N,$$
(3.32)

and thus

$$0 \le s^n \le s^0 + CK, \quad n = 1, 2, ..., N.$$
(3.33)

Uniqueness of Solution

Theorem 3.9. For a sufficiently small Δt , the problem (3.21)–(3.23) has a unique solution $\{u^n, s^n\}$.

$\star\star\star$

$$\varphi' \ge 1 - \Delta t \|\eta_x\| - \|k_x\| \sqrt{\Delta t} e^{\overline{a}s^0} \sqrt{U} \left[\tanh\left(\sqrt{\frac{U}{\Delta t}}s^0\right) \right]^{-1} \cdot \overline{M}_1$$
(3.39)

for $x \in [s^{n-1}, s^{n-1} + C]$. Hence, for sufficiently small Δt we obtain the estimate

$$\varphi^{n'}(x) > 0, \quad x \in [s^{n-1}, s^{n-1} + C],$$

and thus the function $\varphi^n(x)$ is increasing on $[s^{n-1}, s^{n-1} + C]$ and has at most one zero.

Problem. A slab, $0 \le x \le 1$, initially solid at temperature $T_s = u_2(x,0) = -0.5^{\circ}$ C and $u_1(x,0) = 0^{\circ}$ C (just formally), s(0) = 0, is melted from the left by imposing a temperature $T_l = u_1(0,t) = 1^{\circ}$ C at the face x = 0 and at the back face x = 1 use the Neumann temperature itself. Find the triple $\{u_1(x,t), u_2(x,t), s(t)\}$, where u_1 and u_2 denote the temperature in the liquid and solid phases, respectively.

Location of the free boundary s(t) computed by two different algorithms

t	Alg1	RE1	Alg2	RE2	True Solution
4.0309	0.0351	0.0140	0.0346	0.0281	0.0356
6.0460	0.0461	0.0573	0.0447	0.0252	0.0436
8.0470	0.0523	0.0398	0.0505	0.0040	0.0503
